Building the binary tree

Problem

Given a list of child->parent relationships, build a binary tree out of it. All the element Ids inside the tree are unique. 

Example: 

Given the following relationships: 

Child Parent IsLeft 
15 20 true 
19 80 true 
17 20 false 
16 80 false 
80 50 false 
50 null false 
20 50 true 


You should return the following tree: 
       50 
       /   
   20      80 
   /  \     /  
15 17 19 16


Given the fact the input might not contain the node relationship information in order of top-to-bottom, we need to find a way to keep the created node somewhere to avoid creating a duplicate node. Also, it should be efficient to determine where the node in the relationship was created.

One way to do this is to use a hashtable containing the value of the node as a key and a pointer to the node as a value.

Now, we can iterate over the input relationship and start building the tree.
One thing to be careful of is that we need to remember the root node and return it at the end of the program.

We need to store the node whose parent is null.

Hashtable provides the constant search and inserts time of O(log N), where N is the number of nodes.

The loop statement over the input relation will be O(M), where M is the number of inputs.

Therefore, overall running time is O(M log N).

Here is the C++ solution

#include<map>
#include<iostream>
#include <list>
#include <vector>
using namespace std;
struct node {
node* left;
node* right;
int value;
node(int v): value(v), left(0), right(0){}
};
struct relation {
int child;
int parent;
bool is_left;
relation(int c, int p, bool left):child(c), parent(p), is_left(left){}
};
node * build_tree(vector<relation>& input)
{
node * root = 0;
map<int, node*> list;
map<int, node*>::iterator found;
for (int i = 0; i < input.size(); i++)
{
node *p=0, *c=0;
if ((found = list.find(input[i].child)) != list.end())
{
c = found->second;
}
else
{
c = new node(input[i].child);
list[c->value] = c;
}
if (input[i].parent != INT_MIN)
{
if ((found = list.find(input[i].parent)) != list.end())
{
p = found->second;
}
else
{
p = new node(input[i].parent);
list[p->value] = p;
}
}
if (p)
{
if (input[i].is_left)
p->left = c;
else
p->right = c;
} else {
root = c;
}
}
return root;
}
void print_tree(node * r)
{
int n_cur = 1;
int n_next = 0;
node* cur = 0;
list<node*> queue;
queue.push_back(r);
while(queue.size())
{
cur = queue.front();
queue.pop_front();
n_cur--;
cout <<cur->value<<" ";
if (cur->left)
{
queue.push_back(cur->left);
n_next++;
}
if (cur->right)
{
queue.push_back(cur->right);
n_next++;
}
if (!n_cur)
{
n_cur = n_next;
n_next = 0;
cout<<endl;
}
}
}
int main()
{
vector<relation> input;
input.push_back(relation(15,20, true));
input.push_back(relation(19,80, true));
input.push_back(relation(17,20, false));
input.push_back(relation(16,80, false));
input.push_back(relation(80,50, false));
input.push_back(relation(50,INT_MIN, false));
input.push_back(relation(20,50, true));
node * result = build_tree(input);
print_tree(result);
return 1;
}


Practice statistics

3:31: think up the algorithm
14:33: write up the code
5:39: verifying the code (make minor change while copying the code into vi and found syntax error).

UPDATE(2022-06-11): solved the problem again in Python. 

def print_inorder(node):
if node == None:
return
print_inorder(node.left)
print ("{}".format(node.value))
print_inorder(node.right)
# code
class Node:
def __init__(self, value, parent=None):
self.parent = parent
self.value = value
self.right = None
self.left = None
def build_bst(inputs):
root = None
# hash map for nodes
node_map = {}
for input in inputs:
# check if child exists
if input[0] not in node_map:
node_map[input[0]] = Node(input[0])
child = node_map[input[0]]
if input[1] == None:
root = child
elif input[1] not in node_map:
node_map[input[1]] = Node(input[1])
parent = node_map[input[1]] if input[1] != None else input[1]
child.parent = parent
if parent != None:
if input[2] == True:
parent.left = child
else:
parent.right = child
return root
# test
input = [
[15, 20, True],
[19, 80, True],
[17, 20, False ],
[16, 80, False],
[80, 50, False],
[50, None, False],
[20, 50, True]
]
tree = build_bst(input)
print_inorder(tree)

06:00: to come up with the algorithm
15:00: finished the complete code with one mistake
04:00: to fix the mistake

Comments

Popular posts from this blog

Planting flowers with no adjacent flower plots

Find the shorted path from the vertex 0 for given list of vertices.